Electrolysis of Molten Iron Oxide with an Iridium Anode: The Role of Electrolyte Basicity
نویسندگان
چکیده
Molten oxide electrolysis (MOE) is a carbon-free, electrochemical technique to decompose a metal oxide directly into liquid metal and oxygen gas. From an environmental perspective what makes MOE attractive is its ability to extract metal without generating greenhouse gases. Hence, an inert anode capable of sustained oxygen evolution is a critical enabling component for the technology. To this end, iridium has been evaluated in ironmaking cells operated with two different electrolytes. The basicity of the electrolyte has been found to have a dramatic effect on the stability of the iridium anode. The rate of iridium loss in an acidic melt with high silica content has been measured to be much less than that in a basic melt with high calcia content. VC 2011 The Electrochemical Society. [DOI: 10.1149/1.3623446] All rights reserved.
منابع مشابه
Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide
Molten oxide electrolysis (MOE) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful deployment of MOE hinges upon the existence of an inert anode capable of sustained oxygen evolution. Herein we report the results of a program of materials design, selection, and testing of candidate anode materials and demonstrate the utility of i...
متن کاملMolten Oxide Electrolysis for Lunar Oxygen Generation Using In-situ Resources
Molten Oxide Electrolysis (MOE) is a promising and laboratory-proven in-situ resource utilization technology for generating oxygen from lunar regolith simulant. Prior to this work, iridium metal was the only demonstrated suitable inert anode material, but its use had been limited to laboratory-scale testing owing to its extraordinarily high density, hardness, and cost. In the current work, elec...
متن کاملProspects and challenges of iron pyroelectrolysis in magnesium aluminosilicate melts near minimum liquidus temperature.
Although steel production by molten oxide electrolysis offers potential economic and environmental advantages over classic extractive metallurgy, its feasibility is far from being convincingly demonstrated, mainly due to inherent experimental difficulties exerted by harsh conditions and lack of knowledge regarding relevant mechanisms and physico-chemical processes in the melts. The present work...
متن کاملChemical mechanism of the high solubility pathway for the carbon dioxide free production of iron.
We determine the fundamental iron oxide high solubility mechanism that drives a new electrolytic pathway to iron production, and eliminates a major CO(2) emission source, for example it is produced using wind and solar energy, in a molten carbonate electrolyte, at a high rate and a low electrolysis energy.
متن کاملElectrolysis of a molten semiconductor
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011